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Abstract Aging is a complex physiological process
associated with degenerative disorder of metabolism
and immune function, which contributes to the occur-
rence of senile diseases. The gut microbiota affects
systemic inflammation in aging processes probably
through metabolism, but their relationship is still un-
clear. In this study, 16S-rRNA-sequencing technology,
gas chromatography-time-of-flight mass spectrometry
(GC-TOFMS)–based metabolic profiling, and immune
factor analysis combined with advanced differential and
association analysis were employed to investigate the
correlation between the microbiome, metabolome, and

immune factors in male Wistar rats across lifespan. Our
findings showed significant changes in the ileum
microbiome and serum metabolome compositions
across aging process. A two-level strategy was applied
to demonstrate that key metabolites associated with age
such as 4-hydroxyproline, proline, and lysine were clus-
tered together and positively correlated with beneficial
microbes including Bifidobacterium, Lactobacillus, and
Akkermansia. Function analysis explored association
between serum metabolite class and specific gut bacte-
ria’s metabolism pathways. Further correlation analysis
on all the alteration patterns provided an interaction
network of main immune factors such as IL-10, IgA,
IgM, and IgG with key gut bacteria and serum metabo-
lites. This study offers new insights into the relationship
between immune factors, serum metabolome, and the
gut microbiome.

Keywords Aging . Serummetabolites .Gutmicrobiota .
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Introduction

Aging is a physiological process involving complex
interdependent network systems and contributes to the
onset and progression of senile diseases such as cardio-
vascular disease, Alzheimer’s disease (AD), arthritis,
and diabetes (Butler et al. 2008; Wijsman et al. 2011).
Age-related decrease in gut microbiota diversity has
been reported among the elderly, and this has been
linked to an increase in the risk of different diseases.
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Bifidobacterium spp. and Lactobacillus spp. are more
abundant during the early stages of life and decrease in
old age (Hor et al. 2019; Singh et al. 2019). Gut flora
plays a critical role of imbalance in senescence and
premature death of progeria animals, and the
dysbacteriosis could be significantly improved by trans-
plantation of normal fecal bacteria or supplementation
with Akk bacteria. Although the mechanisms for these
changes have not been clarified, metabolic regulation
may act a pivotal part in senescence regulation by intes-
tinal flora (Bárcena et al. 2019).

From the first day of life, the gut microbiota functions
in metabolism and supports growth, development, ma-
turity, and aging (Chen et al. 2019; Korpela et al. 2019;
Ticinesi et al. 2019). Gut microbial metabolites are
important signaling molecules associated with the oc-
currence of a number of diseases such as cancer and
cardiovascular diseases (Kurilshikov et al. 2019). In
2016, we explored brain metabolome, revealing gut
flora–related metabolites which were detected dramati-
cally changing in rat brain with age (Zheng et al. 2016).
Subsequently, we proposed a strategy association study
of brain metabolome and gut microbiome across the
lifespan of rats (Chen et al. 2018). These two studies
provide appropriate approaches to data analysis and
association of metabolome and microbiome, expanding
our understanding of the microbial-metabolite
relationship.

Aging is characterized by chronic, low-grade system-
ic inflammation referred to as inflammaging which con-
tributes to the pathogenesis of age-related diseases
(Ferrucci and Fabbri 2018; Sansoni et al. 2008). Chang-
es in immune cytokines have been closely related to the
occurrence and development of senile diseases
(Castaneda-Delgado et al. 2017), whereas the causes
of this low-grade inflammation and its specific regula-
tory mechanism are still unclear. Recent studies suggest
that the gut bacteria may play a crucial role in these age-
related inflammations (Buford 2017). However, the
linkage between the immune system, gut microbiota,
and metabolites throughout the aging process has not
been established. Identifying the relationship between
the immune system and the gut microbiota can help to
promote healthy aging and also provide new approaches
to anti-aging.

The current study explored the relationship between
immune factors, serum metabolome, and gut microbiota
in male Wistar rats at different time points (weeks 1, 3,
7, 9, 12, 56, 111). The study utilized a three-pronged

association study coupled with immunologic factor
analysis, serum metabolic profiling, and microbiome
analysis. The dual-omics data were extracted and clus-
tered into groups with different changing characteristics
(Pedersen et al. 2018). Spearman’s correlation analysis
and network were used to determine the immune factor-
metabolite-bacterium correlation pairs. This provides an
understanding of the relationship between immune fac-
tors, serum metabolome, and gut microbiome at differ-
ent aging processes.

Materials and methods

Animal handling and sample collection

All experiments were carried out strictly in accordance
with recommendations on the National Institutes of
Health’s Guide for Care and Use of Laboratory Ani-
mals. The experimental program was approved by the
Center for Laboratory Animals of Shanghai Jiao Tong
University.

The whole experimental workflow is summarized in
Fig. 1. Briefly, male Wistar rats were all born by the
seven mother rats purchased from Shanghai Laboratory
Animal Co, Ltd. (SLAC, Shanghai, China). Six new-
born rats were randomly selected from each litter and
randomly assigned to each group. All laboratory rats
were fed in a clean environment under the condition of
12-h light/12-h dark cycle at 20–22 °C and 45 ± 5%
humidity. Also, all rats were given free sterile chow
and water. The diet composition of standard chow is
provided in Table S1. A total of 42maleWistar rats were
allotted to 7 groups (weeks 1, 3, 7, 9, 12, 56, and 111
after birth, represented by W1, W3, W7, W9, W12,
W56, andW111, n = 6 per group). Blood, whole spleen,
and intestinal content samples were collected from each
rat at the end of the corresponding time point. Blood
sample was extracted from the tail vein and then centri-
fuged at 4 °C, 3000 rpm for 20 min; the supernatant was
transferred to a fresh tube. All samples were immediate-
ly stored at − 80 °C pending analysis.

GC/TOF-MS sample preparation and assessment

Serum metabolomics pretreatment and measurement
were performed according to the procedures established
in our laboratory (Hou et al. 2015; Zhang et al. 2016).
Briefly, 300 μL of a precooled mixed solvent
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(Vmethanol:Vchloroform = 3:1) was added to 50 μL serum in
a 1.5-mL centrifuge tube, followed by vortex oscillation
for 30 s. Then, the mixture was arranged in − 20 °C for
10 min and centrifuged at 1000 rpm for 10 min. A total
of 300 μL supernatant was transferred into a new vial
with L-2-chlorophenylalanine (0.1 mg/mL, 10 μL) as
the internal standard. Afterward, the supernatant was
dried under vacuum at room temperature and dissolved
by 80 μL methoxamine (15 mg/mL in pyridine). After
vortex oscillation for 30 s, the sample vial was stored at
30 °C for 90 min. Finally, the sample vial was added
with 50 μL of bis(trimethylsilyl)trifluoroacetamide
(containing 1% trimethylchlorosilane) and kept at
70 °C for 60 min. The sample vials were kept at room
temperature for 1 h before mass spectrometry analysis.

All samples were randomly injected to minimize
systematic deviations. Quality control (QC) samples
were prepared by pooling all plasma samples and used
for all analytical methods. A mixed extraction of QC
sample was subjected to assessment every ten sample
injections.

Metabolite profiling was acquired using gas
chromatography-time-of-flight mass spectrometry
(GC/TOF-MS, LECO, USA) platform and preprocessed
by Chroma TOF (LECO, USA). Compounds were iden-
tified using in-house and online libraries, such as the
Human Metabolome Database (HMDB) and the Na-
tional Institute of Standards and Technology (NIST).
The final dataset included compound name, peak area,
and retention time. Annotated metabolites with zero
values in more than 60% samples were excluded. The
mean value of corresponding variables was used to
complete the missing value. A total of 82 metabolites
were obtained, which were normalized into the total
peak abundance of all metabolites in each sample before
statistical analysis. They were then divided into 5 me-
tabolite types according to their chemical structure.

Ileum content microbiota assessment

The ileum contents were removed from storage. Micro-
bial DNA was extracted using the QIAamp Stool Mini
kit (Qiagen, cat. no. 51504). The V4 hypervariable
region of 16SrRNA was chosen as the PCR amplified
region. The bacterial forward primer was 5 ′-
AYTGGGYDTAAAGNG-3′ and the reverse primer
was 5′-TACNVGGGTATCTAATCC-3′. The PCR con-
ditions were set as follows: one predenaturation cycle at
94 °C for 4 min, 25 cycles of denaturation at 94 °C for

30 s, annealing at 50 °C for 45 s, elongation at 72 °C for
30 s, and one post-elongation cycle at 72 °C for 5 min.
The amplified PCR products were separated on 0.8%
agarose gels and extracted. The PCR products without
primer dimers and contaminant bands were included for
sequencing by Illumina Miseq platform.

The original data obtained by sequencing was saved
in a paired-end FASTQ format and performed with
QIIME 2 (version 2019.4) (Bolyen et al. 2018) with
minor modification according to the official tutorials
(https://docs.qiime2.org/2019.4/tutorials/). Raw reads
were demultiplexed with no error in the index
sequence. The DATA2 (Callahan et al. 2016) was used
to obtain quality filtered, denoised, chimera-free, and
merged amplicon sequence variants (ASVs). Sequences
with any ambiguous based were excluded. Taxonomic
annotation of ASVs was obtained in the Greengenes
database (DeSantis et al. 2006). Alpha diversity metrics
and beta diversity metrics were estimated using the
diversity plugin. ASVs with richness in less than 0.001
% total reads or with zero values more than 80% of
samples were removed. In this study, 427 ASVs under
16 phyla were reserved for subsequent analysis.
PICRUst2 (Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States) together with
KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway library were applied to obtain predicted func-
tion matrix (Douglas et al. 2019). A total of 127 func-
tions that related to metabolism were kept for analysis.

Measurement of immune factors and cytokines
in the spleen

The levels of immune factors (IL-2, IL-4, IL-10), im-
munoglobulins (IgA, IgG, IgM), and NK cell in spleen
samples were measured by the Rat interleukin-2 (IL-2)
ELISA Kit, Rat interleukin-4 (IL-4) ELISA Kit, and Rat
interleukin-10 (IL-10) ELISA Kit; Rat immunoglobulin
A (IgA) ELISA Kit, immunoglobulin G (IgG) ELISA
Kit, and immunoglobulin M (IgM) ELISA Kit; and NK
cell ELISA Kit (Shanghai Jianglai Biotech, Shanghai,
China). All steps followed the manufacturer’s
instructions.

Statistical analysis

The data matrix was imported into SIMCA-P 13.0
(Umetrics, Sweden) for principal component analysis
(PCA) and partial least squares discriminant analysis
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(PLS-DA) analyses, which were constructed using the
GC-MS data as the X variable and the age as the Y
variable. Also, principal coordinate analysis (PCoA)
based on unweighted and weighted UniFrac OTU ma-
trix was performed. MetaboAnalyst 3.0, GraphPad
Prism 5.0 (6.0, GraphPad, USA), and R program (ver-
sion 3.5, https://www.r-project.org/) were used for data
analysis. Significant differences in variances among all
seven groups were identified by the Kruskal-Wallis test
as over 85% of the variables did not conform to normal
distribution, followed by Dunn’s post hoc test using a
Benjamini-Hochberg false discovery rate (FDR) for
multiple testing. Data in figures were presented as mean
± SEM. All tests were two-sided, the p values were
corrected using FDR, and p < 0.05 was considered sta-
tistically significant.

Association analysis

We applied a two-level strategy to determine the asso-
ciations between the serum metabolome and gut
microbiome. For the high-level association study, two
dimensionality reduction methods were used: (1) for
knowledge-driven, correlations of metabolite types and

predicted metabolic function–derived bacterial data
were tested; (2) for data-driven, the integration and
association study of intestinal microbiome data and
serum metabolome data was performed according to
the computational protocol with modifications
(Pedersen et al. 2018). Firstly, we collapsed co-
abundant serum metabolites into metabolite clusters
(labeled M01-M12) using the R package WGCNA
(weighted gene co-expression network analysis)
(Langfelder and Horvath 2008) (Fig. 1). Signed, weight-
ed co-abundance correlation (biweight midcorrelations
after log2 transformation) networks were calculated
across all metabolites. The resulting cluster eigenvector
was presented to the profile of each metabolite cluster.
The parameters were set in line with the details of the

Fig. 1 Overview of the workflow integrating serum metabolome,
gut microbiome, and spleen cytokines in rats among different age
groups. After preprocessing raw metabolome and microbiome
data, metabolites and microbiota are separately collapsed into co-

abundance clusters. After which the clusters are filtered for statis-
tically significant associations with age. Finally, the resulting
clusters are taken for cross-domain association study

�Fig. 2 The effects of age on the serummetabolome. a The relative
abundance of metabolite types in infancy, adulthood, and old age.
The pie charts were normalized by samples groups. b The
principal component analysis (PCA) performed based on each
serum metabolite from all age groups. The boxplots of relative
abundance of significantly changed metabolites of c amino acid
metabolism, d carbohydrate metabolism, and e fatty acid metabo-
lism in rats among the lifespan (n = 6). +p < 0.05, *p < 0.01, and
**p < 0.001 when compared with W7 by Dunn’s test
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polar metabolites clustering in the published paper
(Pedersen et al. 2018). Secondly, the microbiota data
was summarized to microbiota clusters (labeled B01-
B10) using the same method of metabolites. Thirdly, in
the age-filtering step, age-related clusters were filtered
by Spearman’s correlation analysis with p < 0.05 and
FDR < 0.1 and the resulting clusters were taken for
cross-domain association analyses between metabolo-
mics and microbiome. For the low-level association
study, the associations among specified metabolite, bac-
terium, and cytokines were listed. Spearman’s rank cor-
relation coefficients were calculated using the cor.test
function (method = “spearman”) and were plotted with
the pheatmap function in the package of R program. The
significant correlation pairs were depicted in Cytoscape
(3.4.0).

Results

Profiling of serum metabolites in rats by GC/TOF-MS

A total of 82 metabolites were identified by GC/TOF-
MS, including 24 amino acids, 15 carbohydrates, 11
fatty acids, 19 organic acids, and 13 other small
molecules. Amino acids and carbohydrates were the
predominant types of metabolites, which account
62% of all metabolites (Fig. 2a). PCAwas performed
to characterize the global metabolomics differences
among groups. The PCA score plot showed that the
profile at 1 week was significantly different from
other age groups (Fig. 2b). The profiles of all age
groups can be clearly separated by the first and sec-
ond principal components. Unsupervised analysis of
serum groups showed that age was the predominant
factor to the metabolic profile of healthy rats. This
observation was also confirmed by the PLS-DA mod-
el at all age groups (Fig. S1a).

In order to find out the variables that contribute to
the separation of serum metabolome, we further eval-
uated the alterations of aging on specific metabolites.
Metabolites that showed significantly differences
among 7 time points by the Kruskal-Wallis test were
included. Several amino acids including leucine, phe-
nylalanine, valine, and isoleucine increased while 4-
hydroxyproline, lysine, and proline decreased with age
(Fig. 2c). Interestingly, the levels of several carbohy-
drates showed a separation at the age of week 9. For
example, glycerol, erythritol, and galactose decreased

from W1 to W9 and increased from W9 to W111.
Gluconate and glucuronate increased from W1 to W9
and decreased from W9 to W111 (Fig. 2d). The levels
of tetradecanoate, dodecanoate, decanoate, and
docosahexaenoate were extremely high at W1 com-
pared with other age groups. Docosahexaenoate,
elaidiate, and linoleate decreased from W1 to W9 and
increased from W9 to W111 (Fig. 2e).

Composition of intestinal microbiota in rats by 16S
rRNA

Using the 16S rRNA sequencing, a total of 73 genera
and 26 species were annotated among the 427 ASVs,
which were present in at least 60% of the samples.
Alpha diversity metrics and beta diversity metrics were
estimated in Fig. S1c. In the phylum level, Firmicutes
and Proteobacteria were the most predominant bacterial
phyla found in ileum, followed by Bacteroidetes,
Actinobacteria, Acidobacteria, and Verrucomicrobia
(Fig. 3a). The relative abundance of Firmicutes was
almost equal to Proteobacteria at the infancy, and then,
Firmicutes increased and Proteobacteria decreased with
age. The relative abundance of Firmicutes was positive-
ly correlated with age, while other phyla negatively
correlated with age, such as Bacteroidetes,
Proteobacteria, and Actinobacteria (Fig. 3a).

To characterize the global differences in gut micro-
biota composition among all seven groups, PCoA anal-
ysis was performed based on the unweighted and
weighted UniFrac distances of the microbiota to visual-
ize the clustering of all rats. From the PCoA plots shown
in Fig. 3b, the composition of the ileum microbiota was
dramatically changed from W1 to W111. The PCoA
plot based on weighted UniFrac was depicted in Fig.
S1b.

To explore the detailed gut microbiota composition,
we analyzed the relative abundance of the dominant
genera and species which were different in all groups
(tested by the Kruskal-Wallis test with p value < 0.05).
The levels of Rhodococcus spp., Actinobacillus spp.,
and Bacillus spp. were enriched in the aged rats. The
relative abundance of Bifidobacterium spp., Lactobacil-
lus acidipiscis, Akkermansia muciniphila, and Rothia
spp. were significantly higher at the development stage
(W1 to W7), while decreased from W9 and reached an
extremely low level at W56 and W111 (Fig. 3c). Some
genus was only higher in adulthood (W7–W12) includ-
ing Turicibacter spp. and Lactobacillus reuteri.
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Correlation analysis of metabolome and microbiome

In the high-level association study, we performed two
different strategies for dimensionality reduction. For the
knowledge-driven dimensionality reduction, the
heatmap in Fig. 4a shows the correlation between me-
tabolite types and gut microbiome functional pathways
(details of each category in Table S2). The black-
bordered square marks indicate the parts that are signif-
icantly related to age, and their change trend with age is
shown in Fig. 4b.

For the data-driven dimensionality reduction, using
the newly reported computational platform (Pedersen
et al. 2018), we collapsed metabolites and gut microbiota
data into 12 and 10 clusters, respectively, and the every
individual metabolite and bacterium that within each
cluster was summarized in Table S3 and Table S4. The
metabolic and bacterial clusters that most related to age
were M01 (r = − 0.870, p = 9.98 × 10−13) and B05 (r = −
0.774, p = 1.84 × 10−08), respectively. The M01 includes
three amino acids proline, 4-hydroxyproline, and lysine,
which were all decreased with age (Table S3). The B05
includes several probiotics, such as Rothia spp.,
Bifidobacterium spp., Lactobacillus acidipiscis, and En-
terococcus spp., which were significantly negatively cor-
related with age (Table S4). Then the clusters were taken
forward for cross-domain association analyses (Fig. 5).
Also, the M01 was positively correlated with B05 (r =
0.651, p = 4.28 × 10−05).

In the low-level association study, the association
between individual metabolite and gut microbiota was
performed and is shown in Fig. S2. Several associations
between metabolites and microbiota were identified at
an FDR of 0.05. In this heatmap, a variety of age-related
me t abo l i t e s , i n c l ud ing 4 -hyd roxyp ro l i n e ,
tetradecanoate, dodecanoate, decanoate, and benzoate,
were significantly correlated with gut genus.
Tetradecanoate, dodecanoate, and decanoate were posi-
tively correlated with Glycomyces spp., Olivibacter
spp., Phascolarctobacterium spp., Pedobacter spp.,
Phenylobacterium spp., etc. in B04; and Sphingobium

spp., Anaeroplasma spp., Chitinophaga spp., and
Cellvibrio spp. in B06.

Correlation analysis on metabolites, bacterium,
and immune factors

The alterations of immune factors and cytokines among
the lifespan are illustrated in Fig. S3; they are represent-
ed by “factors” hereby. In addition, cytokines and im-
mune indicator levels did not change a lot with age,
except for IL-2 which showed a decreasing trend with
age (Fig. S3). At the last time point, a few factors
showed significant differences within group, indicating
differences in the immune status of the elderly (Fig. S3).

The percentage of two related variable pairs (bacte-
ria-metabolites, immune factor-bacteria, and immune
factor-metabolites) is shown in Fig. 6a, showing that
the correlations between immune factors and metabo-
lome declined with age. Details of age-specific correla-
tions are listed in Fig. S4, indicating amino acids, fatty
acids, and TCA participants showed high correlations
with immune factors in childhood period.

The associated relationship between immune factors
and metabolites, as well as gut microbiota in whole
samples (whole ages), was conducted and is displayed
in Fig. S2. The complex network in Fig. 6b summarized
complicated relationships among the changes of key
variables, showing that IL-10, IgM, IgA, 4-hydroxypro-
line, and tetradecanoate were crucial nodes, including
local correlation groups such as tetradecanoate-
decanoate-dodecanoate, IgG-cysteine, and 4-hydroxy-
proline-IgA. In general, amino acids and long-chain
fatty acids showed a stronger association with immune
factors and cytokines. Succinate, malate, fructose, ben-
zoate, and long-chain fatty acids including
tetradecanoate, dodecanoate, and decanoate were posi-
tively correlated with IgM, but most of them were
negatively correlated with IL-10 (Fig. S2). IgA is pro-
portional to inosine and inversely proportional to 4-
hydroxyproline and proline (Figs. 6b and S2).

In the correlation analysis between gut bacteria and
factors, we only found that IL-10, IgM, IgA, IgG, and
NK were significantly correlated to gut bacteria (Figs. 6
and S2). Specifically, IL-10 was positively related to a
variety of bacteria, such as Lactobacillus spp., Lactoba-
cillus reuteri, Bacillus spp., and Flavobacterium
succinicans, and negatively related to most of gut gen-
era, especially Cellvibrio spp., Clostridium spp., and
Clostridium celatum. IgA in the spleen was positively

�Fig. 3 The effects of age on the microbial composition. a The
relative abundance of bacterial phyla in infancy, adulthood, and
old age. The pie charts were normalized by sample groups. b The
principal coordinate analysis (PCoA) performed based on the
mean-centered values of unweighted UniFrac matrix. c The
boxplots of the relative abundance of significantly changed genera
and species in rats among the lifespan (n = 6). +p < 0.05, *p < 0.01,
and **p < 0.001 when compared with W7 by Dunn’s test
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correlated with Flavobacterium succinicans ,
Actinobacillus spp., Cupriavidus spp., Rhizobium spp.,
Rhodococcus spp., and Salinispora spp. and negatively
correlated with Rothia spp., Bifidobacterium spp., En-
terococcus spp., and Candidatus Arthromitus, indicat-
ing that immune factors are highly related to ileal flora.

Discussion

The gut microbiota is associated with the immune sys-
tem factors which are important contributing factors to
age-related degenerative diseases (Biragyn and Ferrucci
2018). Compared with mice, experimental rat gut
metagenome showed a higher pairwise overlap with
humans than that between mice and humans at the gene
level (Pan et al. 2018). In our previous studies, we
demonstrated metabolic deviation in different brain re-
gions due to aging (Zheng et al. 2016) and investigated
the correlation between intestinal flora and brain metab-
olites in rats (Chen et al. 2018). Brain metabolism
showed significant shifts in different life stages of rats.
Similar results were also reported in the current study.
Serum metabolite levels variated differently at early
ages (W1–W9) compared with those at an older age
(W12, W56, and W111) (Fig. 2). These changes at
9 weeks were associated with the rat’s maturation. In
infancy, minimal carbohydrate (saccharides and glycols)
levels are detected, and then, they reach normal levels in
adulthood and remain unchanged or slightly increased
in old age (Fig. 2d). However, fatty acids were shown to
be at higher levels in the early stages of life (Fig. 2e).
Glycerol and fatty acids are significantly higher in the
early stages of life compared with older stages, and this
has been associated with the breast milk diet (Dessì et al.
2018). Among the three most abundant phyla in the
ileum, Firmicutes have been shown to gradually in-
creased with age, while the others showed different
trends (Fig. 3a). It can be inferred that the difference in
diet is one of the reasons for the differences in gut flora
at infancy. In addition, disorders associated with flora
disturbance result in the regulation of energy metabo-
lism and the accumulation of excessive fat in old age
(Maier et al. 2017).

Serum amino acid level displayed a positive correla-
tion with nucleic acid and lipid metabolism; amino acids
had a negative correlation with amino acid and vitamin
metabolism (Fig. 4), indicating that gut bacteria might
have complementary effect on amino acid production

(Dodd et al. 2017).There is a similar relationship be-
tween ureas and multiple pathways of gut bacteria, as it
was proven that the supplement with prebiotics and
probiotics significantly increased uric acid and de-
creased urea and urea nitrogen levels in blood (Firouzi
and Haghighatdoost 2018). This correlation results in
Fig. 4 illustrated an overall interaction of circulating
metabolites and gut flora’s metabolism function.

Our results showed 4-hydroxyproline having the
most significant changes among the metabolites due to
the significant decline after aging (Fig. 2c), and also an
important node in the correlation network (Fig. 6b). One
of the significant characteristics of old age is the loss of
collagen, while 4-hydroxyproline is a decomposition
product of collagen. Furthermore, the results showed
that serum 4-hydroxyproline levels gradually decreased
with age. Age-related probiotics in the B05 bacterial
group (Fig. 5, details in Fig. S2 and Table S4) including
Rothia spp., Bifidobacterium spp., Lactobacillus
acidipiscis, and Enterococcus spp. were shown to be
positively correlated with 4-hydroxyproline. It has been
reported that 4-hydroxyproline metabolic enzymes exist
widely in the gut microbiota, which participate its me-
tabolism with the host (Huang et al. 2018). So it could
be inferred that the collagen metabolism is partly im-
pacted by aging caused by changes in the microbiota. In
the cluster M01 (Fig. 5, details in Fig. S2 and Table S3),
proline and lysine showed similar trends with 4-
hydroxyproline (Fig. 2c). These two amino acids are
also closely related to aging and inflammation (Nepal
et al. 2018). While in cluster M11, gluconate and
glucuronate decreased in old age. In addition, infants’
serum levels of myo-inositol and citrate were found to
be significantly lower than those in adults (Fig. 2d). This
indicates that energy metabolism is slowed down by
aging.

Cysteine, a precursor of the anti-oxidant glutathione
with multiple physiological functions, was found to be
significantly declined in both infancy and old age (Fig.
2c). Oxidative stress induces abnormal cysteine oxida-
tion in aging and neurodegenerative diseases and also
affects protein function (Gu and Robinson 2016). This
confirms the need for cysteine supplementation for in-
fants, old adults, and even people with certain metabolic
diseases (McCarty and DiNicolantonio 2015). In this
study, cysteine was positively correlated with
Bifidobacterium spp., Desulfovibrio spp., and Strepto-
coccus alactolyticus (Fig. 6, details in Fig. S2). Studies
have shown that the expressions of cysteine biosynthetic
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genes are very important for Bifidobacteria growth
(Ferrario et al. 2015). A recent study suggested an
antagonistic relationship between sulfur-reducing bacte-
ria and Bifidobacterium spp., which compete for cyste-
ine (Malmuthuge et al. 2019). In this study,
Bifidobacterium sp. content and cysteine were low dur-
ing the first week of life. With the increase in abundance
of Bifidobacterium spp., cysteine was also increased,
and then, they were found to both decrease in old age.
Therefore, it could be inferred that supplementation of
Bifidobacterium spp. or cysteine may promote each
other and help improve metabolic disorders in old age.

The levels of an aromatic amino acid (including
phenylalanine, tyrosine, and tryptophan) and branched-
chain amino acid (BCAA, including isoleucine, leucine,
and valine) were shown to be increased from W9 to
W111 (Fig. 2c), whereas higher levels of circulating
BCAA were associated with insulin resistance and the
development of diabetes and have been reported as
predictors of cardiovascular diseases (Chen et al. 2016;
Magnusson et al. 2013; Wang et al. 2011). Correlation
analysis results revealed that branched-chain amino
acids and their metabolites, ornithine and phenylalanine,
were found to be positively correlated with IL-10 (Figs.
6b and S2). It was reported that branched-chain amino
acid affects immune functions and even the concentra-
tion of IL-10 (De Simone et al. 2013). IL-10 is believed
to regulate aging-related inflammation by affecting in-
sulin resistance, while maintaining high levels of IL-10
may help to enhance body vitality and resist aging
(Dagdeviren et al. 2017; Jankord and JEMIOLO
2004). In this correlation network diagram (Fig. 6b),
IL-10 is located at a crucial node of the network, which
is associated with multiple metabolites and enteric bac-
teria. Recent studies have reported that inflammatory
factors are regulated by a variety of metabolites, such
as methionine and serine (Yu et al. 2019). Methionine
was found to be positively correlated with IgG, while

ferulate was positively whereas serine was negatively
correlated with IgG and NK (Figs. 6 and S2).

Notably, the W1 group had higher abundance of all
fatty acids detected in the serum than other age groups
(Fig. 2e), indicating that fatty acids participate in the
development of rats at infant stage. The decline in fatty
acids fromW1 to W7 revealed rapid consumption from
infant to adulthood. In our results, the abundance of
docosahexaenoate (DHA), elaidiate, and linoleate grad-
ually increased from W9 to W111. Previous study re-
ported that elaidiate is elevated in obese individuals and
those with metabolic syndrome (Gil-Campos et al.
2008; Kim et al. 2013). Circulating PUFAs affect host
inflammation state (Perreault et al. 2014; Steffen et al.
2012). It has been proven that DHA have an effect on
IL-2 signaling pathways (Gorjão et al. 2013). Our re-
sul t s show a pos i t ive assoc ia t ion between
docosahexaenoate (DHA) and inflammatory IL-2, and
both of themwere isolated from the whole network (Fig.
6b), while other long-chain fatty acids such as
tetradecanoate, dodecanoate, and decanoate were posi-
tively correlated with Phascolarctobacterium spp. in
B04, Anaeroplasma spp. and Cellvibrio spp. in B06,
and Akkermansia muciniphila in B03. Akkermansia
muciniphila was reported to regulate metabolism bal-
ance and immune tolerance (Greer et al. 2016; Plovier
et al. 2017). Recent studies have shown that
Phascolarctobacterium spp. produce propionate and
are associated with dietary intervention among vulnera-
ble elderly people (O'Hara et al. 2018; Tran et al. 2019).
Anaeroplasma was also associated with polyunsaturated
fatty acid feeding and positively correlates with acetic
acid level in rat brains (Nguyen et al. 2019; Robertson
et al. 2017). Furthermore, tetradecanoate, dodecanoate,
and decanoate were all associated with IgM and
“tetradecanoate-decanoate-dodecanoate-IL-10-IgM”
formed a local close connection in Fig. 6b, reflecting the
possible interaction between immune factors and
metabolites.

The line chart of correlated pairs in Fig. 6a revealed
that the percentage of significantly correlated factor-
metabolite pairs is higher in the early stages of life
declined with age (infancy). In particular, amino acids,
fatty acids, and TCA participants such as citrate and
malate showed higher correlations (Fig. S4). This is
probably due to the fact that infants require an external
diet intake to support the establishment of a mature
immune system (Rijkers et al. 2010). It should be noted
that all the pair (factor-bacteria, factor-metabolites,

�Fig. 5 Correlation analysis results of the data-driven metabolic
clusters-bacterial clusters across the lifespan. a The Spearman
correlation coefficient for metabolic clusters-bacterial clusters. b
The scatter plots with correlation coefficients of metabolites and
gut microbiota clusters derived from the computational platform.
The left and bottom panels show associations between clusters and
age. Colors indicates the association direction with age (red:
positive; blue: negative; gray: not significant). The right panel
shows associations between themetabolomic clusters and bacterial
clusters. The clusters with not at least one significant association
were excluded. In this study, 6 metabolic clusters and 8 bacterial
clusters were kept
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bacteria-metabolites) correlations are decreased in old
age (Fig. S4), which may be the result of too large
variation within the group due to the inconsistent aging
process of individuals.

Previous studies have shown that intestinal flora
regulates some peripheral circulating cytokines, which
also influence the structure of gut flora (Biancheri and
Watson 2017). The result showed that spleen IL-10 was

positively related to a variety of bacteria, such as Lac-
tobacillus spp. and Lactobacillus reuteri (Figs. 6b and
S2), since IL-10 has been implicated in the maintenance
of gut homeostasis (Ray et al. 2015). Probably it does
this by regulating probiotics including Lactobacillus. As
for IgA, studies have shown that secretory IgA affects
mucosal bacterial communities (Donaldson et al. 2018).
Recent research also demonstrates that plasma IgA
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reacts brings about different gut flora structures
(Grosserichter-Wagener et al. 2019). Our result showed
that IgA in the spleen was positively correlated with
Actinobacillus spp. and Rhodococcus spp. and negative-
ly correlated with Rothia spp., Bifidobacterium spp.,
and Enterococcus spp., indicating that immune factors
are highly related to ileal flora as well. Although IgM
could help IgA to promote highly diverse commensal
communities of gut mucosa, spleen IgM was not direct-
ly related to a certain group of bacteria in this study
(Magri et al. 2017).

In summary, this comprehensive dual-omics aging
study identified key metabolites, gut bacteria, immune
factors, and cytokines varying across the lifespan. Our
findings provide new insights into the interactions be-
tween circulating metabolites and gut bacteria function-
al metabolism pathways. A two-level strategy associate
study establishes network links of key metabolites (as 4-
hydroxyproline, cysteine); several beneficial gut bacte-
ria including Bifidobacterium, Lactobacillus, and
Akkermansia; and IgA, IgM, and IL-10 during the
growth, development, and aging of rats.
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